The NewPacs System Results and Reference Sites

Nemo Ltd

City of Mikkeli, Finland, commercial agreement for disinfection of effluent waste water

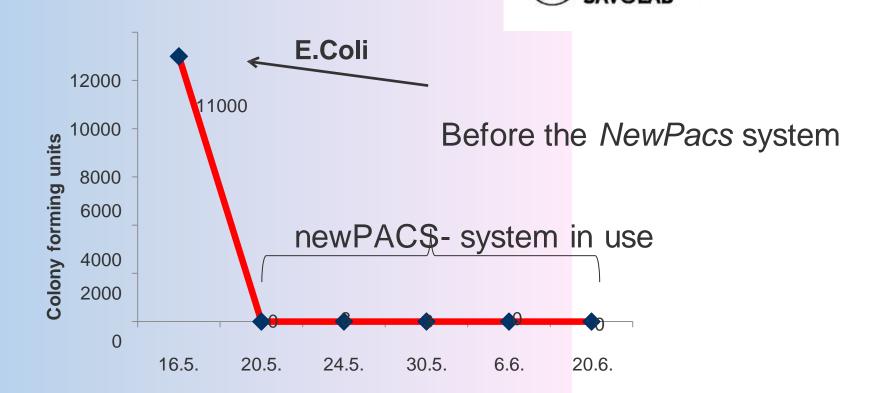
Feeding points in final sedimentation in piloting the *NewPacs* System in 2010 before commercial phase

Control System installations

Overview of Mikkeli WWTP

Results from full scale process in Mikkeli, Finland

Water quality after NewPacs treatment


Parameter	Result
E.Coli	< 1 cfu / 100 ml
Faecal coliforms	3 cfu / 100 ml
BOD7	2,1 mg/l
COD	33 mg/l

Analyzed by:

(independent laboratory)

Results from full scale process in Mikkeli, Finland, continued

NewPacs Disinfection Demonstration, St. Petersburg Kronstadt Waste Water Treatment Plant

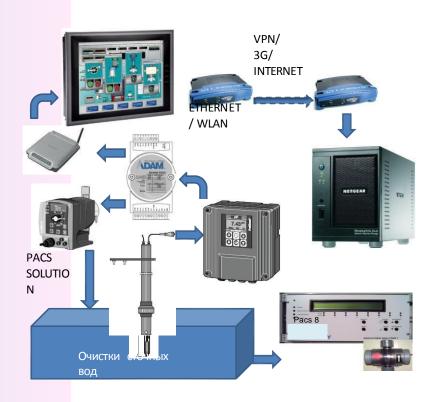
Waste water flow ca 20,000 m3/d

Main goals from customer for coliforms:


- TCB (Total coliform bacteria, CFU/100cm³), target not more than 500
- TTCB (Thermotolerant coliform bacteria, CFU/100cm³), target not more than 100

NewPacs Disinfection Demonstration, St. Petersburg Kronstadt Waste Water Treatment Plant

Feeding point for the chemical



System operator PC and interface

NewPacs system control, data logging and remote control

Disinfection Demonstration,
St. Petersburg Kronstadt
Waste Water Treatment Plant

Microbiological results of the *NewPacs* treatment

Date	тсв	ттсв		
18.11.10				
23.11.10	99.82 %	99.82 %		
25.11.10	99.82 %	99.82 %		
30.11.10	96.96 %	97.34 %		
02.12.10	99.92 %	99.93 %		
07.12.10	99.96 %	99.96 %		
09.12.10	99.97 %	99.97 %		
14.12.10	32.48 %	37.98 %		
16.12.10	99.93 %	99.94 %		
21.12.10	99.79 %	99.78 %		
23.12.10	99.82 %	99.76 %		
28.12.10	99.00 %	99.04 %		
30.12.10				
10.2.2011	99.21 %	99.23 %		
10.2.2011	84.56 %	87.09 %		
10.2.2011	99.83 %	99.88 %		
10.2.2011	99.68 %	99.67 %		
10.2.2011	99.79 %	99.78 %		
10.2.2011	99.77 %	99.73 %		
10.2.2011	99.79 %	99.81 %		
10.2.2011				
17.2.2011				

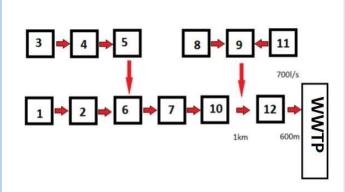
Sestroretsk Waste Water Treatment Plant, St. Petersburg, Russia Disinfection demonstration

- Project for renewal of the site and replacing existing UV-system.
- Comparison of methods was needed (UV/NewPacs).

Waste water flow ca 25.000 m2/d

Sestroretsk, Russia, NewPacs disinfection demonstration

Bacterial colonies after 3 days incubation


Effluent water, Sestroretsk, Russia

UV OFF	UV ON	UV OFF
PACS OFF	PACS OFF	PACS ON
>300	30+	10-30

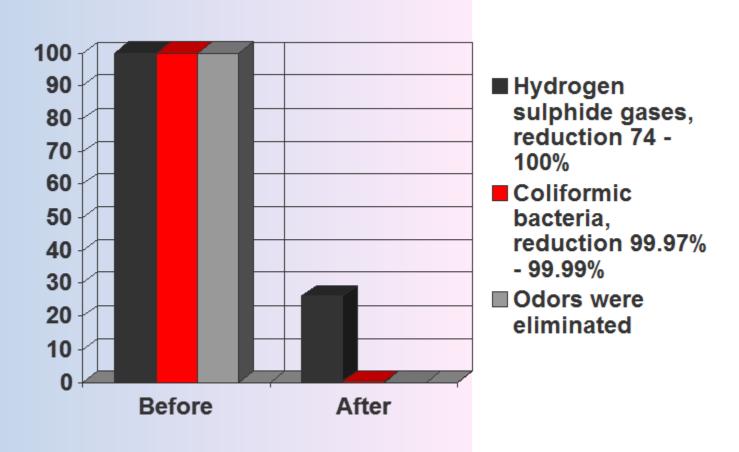
Sorocaba, Brasil, NewPacs odor treatment demonstration

Waste water flow ca 50.000 m3/d

Sorocaba pumping stations and the WWTP.

Chemical delivered to the pumping station

Probe system installed at the pumping station


H₂S and NH₃ measurements were taken at the grit removal of the pumping station

Odour removal at Sorocaba (full scale)

(analyzed in indepent laboratory by waste water plant)

	Pumping Station 12 Well before Covered Open well with					WWTF	uent					
Date	Time	pum _i statio	ping	Time	influ	uent mber	grit re		Time	cham	ber at VTP	Remar ks
		NH_3	H_2S		NH_3	H_2S	NH_3	H_2S		NH_3	H_2S	
22.3.201				8:40			11	4	9:10	16	6	
28.3.201				12:00			12	4	12:00	15	4	
29.3.201				9:30	60	21	11	3	10:00	10	2	Feeding started at 15:00
30.3.201				18:10	40	15	6	0	Nev	vРа	CS	
31.3.201	10:00	14	3	10:00	4	0	0	0	11:00	0	0	
	17:45	5	0	17:45	20	6	0	0	14:45	0	0	
1.4.2011	13:50	35	11	13:50	5	0	4	0	18:15	0	0	
4.4.2011	9:25	0	0	9:30	0	0	0	0	10:10	0	0	Heavy rain during the night
	16:05	7	0						16:00	4	0	9
5.4.2011				8:45	4	0	0	0				
	11:15	24	7	11:20	4	0	4	0				
6.4.2011	13:10	53	4	13:15	8	0	7	0	12:55	8	0	Feeding stopped at 18:00
7.4.2011	12:25	13	5	12:15	13	4	16	5	12:35	69	25	
8.4.2011	10:20	6	2	10:25	6	1	9	1	10:40	12	4	

NewPacs results, Hefei, China

NewPacs results, Tswahne, South-Africa

1mg/l

4mg/l

Faecal coliforms

140 11

		14.91	15.911	
	before	efore after befo		after
8:00	134 000	330	68 000	2000
10:00	96 000	50 000	88 000	340
12:00	108 000	50 000	84 000	320
14:00	128 000	7600	148 000	680
Randwater	62		66 000	2600
19:45				

		19.91	1	20.911	21.911		
22	before	before after b		after	before	after	
8:00	62 000	680	56 000	170	46 000	140	
10:00	54 000	275	24 000	160	32 000	270	
12:00	66 000	325	56 000	60	38 000	150	
14:00	1 000 000	435	54 000	50	44 000	120	
Randwater	28 000	269	26 000	86	13 000	26	
19:45		40					

NewPacs System in drinking water piping disinfection, Virttaa, Finland

- Disinfection of new drinking water pipeline during commissioning to customer
- NewPacs role as subcontractor and expert to pipeline supplier
- Disinfection results against e.g. coliforms according to official requirements
- After disinfection, residues from disinfection to local river below safety level, ensured with patented analyser of the NewPacs System

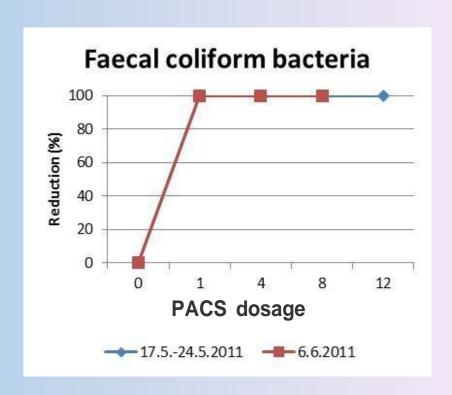
The NewPacs System / Other Referencs

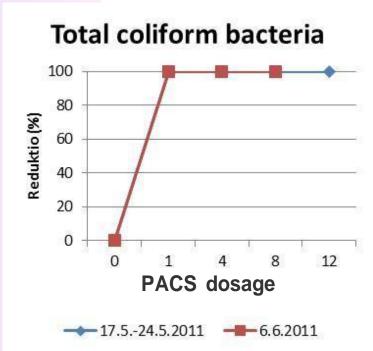
Results of Laboratory Tests Performed by the National Institute for Health and Welfare

LEGIONELLA

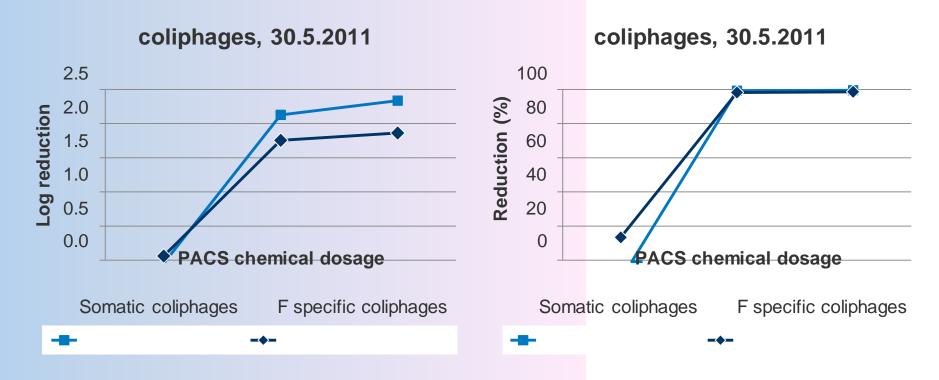
99.9986% reduction

CAMPYLOBACTERIA JEJUNI


99.9984% reduction



ESCHERICHIA COLI


100,00% reduction

Virus post-disinfection results in Oulu, Finland

Virus post-disinfection results in Oulu, Finland

The NewPacs System / Possibilities

1. Raw water treatment

- Odor control
- Safety oxidation
- Breaking of organic material
- Improving sedimentation
- Improving flotation

2. Piping and water reservoir cleaning

Removal of bio-films

3. Alternative for chlorine chemicals

- Disinfectioning chemicals
- Industrial needs

4. Improving waste water treatment

- Odor removal
- Improvement of nitrification
- Boosting of aeration
- Disinfectioning of effluent
- Sludge handling
- Heavy metal removal

5. Cleaning of small lakes and rivers